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Abstract

Wediscussthe observed C- and I.-band polarimetric signatures of thin lead ice in one Syn-
thetic Aperture Radar (S AR) image based on the expectedice properties and results from
a scattering model. in this paper, we focus on thin ice with thicknesses in the range of 0-
I0cin. The layered scattering model used here allows for the inclusion of surface and volume
scat tering contributions from a slush layer, an ice layer and roughness at the interfaces. The
scnsitivity of tile signatures to the model parameters is explored. A highly saline surface
<kimformed on the top surface during ice growth significantly affects the electromagnetic
properties of the medium and helpsto explain the magnitude of the co-polarized returns
athigh incidence angles. Based on thesemodel predictions, we demonstrate an approach
toretrieve theice thickness from polar imetric SAR observations. The approach includes
thetraining of a neural network with model predictions and using this neural network to
estimate the ice thickness distribution using polarimetric observations from SAR data. The

results from this ice thickness retrieval process are discussed.




1 Introduction

Turbulent heat flux from the ocean to the atmospheric boundary layer is a function of sea
ice thickuess with an especially strong dependence on sea ice with thicknesses in the 0-
00cm range[Maykut,1984]. Within this range, the heat flux can increase by at least an
order of magnitude as the thickness approaches zero. Fven though the area] fraction of thin
ice issmall(2-3%) in the Arctic, the integrated magnitude of flux through this ice can be
comparable to that of the thicker ice types. In addition, the brine flux into the ocean is
alsolmportant due to the growth rate at this thickness range. To date, operational airborne
or spaceborne sensors have not been able to provide direct observation of ice thickness.
Instead, coarse ice type categories derived from remote sensing data have been used as a
proxy indicator of ice thickness. However, it is still difficult to unambiguously discriminate
the different types of thin ice from active or passive microwave measurements [Kwok et
al..1992; Cavalierietal., 1 991]. In March1988, a multi-frequency polarimetric SAR was
lownonthe NASADC-8 aircraft and collected data over Arctic sea ice cover as part of
the SSM/I1 validation campaign. Observations from the polarimetric SAR data indicate that
cumbinations of frequency and polarizationenhance our current capability to distinguish ice
ol different properties [Drinkwater ct al., 1991 ; Kwok et al.;1991]. Rignot and Drinkwater
'1993] have evaluated the extraction of ice typefrom multi-parameter SAR data and discussed
thelimitation of single-frequency and single-polarization SAR modes for spaceborne SAR
scusors. However, the retrieval of ice thickness from polarimetric SAR data have not been
addressed mainly due to the lack of coincident surface measurements during the SAR data

acquisitions.

[deallv.an ice thickness retrieval process should be based on a theoretical understanding on
liow t he microwave polarimetricsignature of t hin ice is affected by its physical and elec-
tromagnetic properties. Then, an inversion process can be mechanized to estimate the ice

thickness from polarimetric observations. In the context of thin ice, very few field measure-




ments of the properties of thinice are available [Cor and Weeks, 1974; Gowetal., 1990] due

to its ina cces sibilty and fragility in its nat ural environment. Detailed ice characterization
datahave been obtained from artificial scaice grown during the indoor and outdoor Cold
Regions Research and Engineering Laboratory Experiments (CRRELEX) and these exper-
iments have contributed to the paceandunderstanding of modeling and characterization
clfort.In this paper, we combine the properties of thin ice available from field and labora-
tory measurements and a scattering model to explain the polarimetric radar observations.
Based on the model results, we explore an approach using neural networks to retrieve ice
thickness from the radar measurements. In recent years, neural networks have been applied
asnon-linear estimators for inversion of multi-dimensional models. T'sang et al. [1992] have
applied a neural network toinvert snow parameters from passive microwave remote sensing
measurcements. It was pointed out that after the network is trained with input-output pairs
venerated by scattering models, the co mputational requirements of the inversion process is
very simall compared to traditional techniques. Huynh et al.[1993] have demonstrated the
potential use of neural networks for retrieval of ice thickness from simulated radar data
and have studied the robustness of the neural network to speckle. Here, we investigate the

application of this technique to real polarimetric measurements.

I'he following section provides a brief background on polarimetricSAR data and the ice and
weather conditions during the acquistion of the data used here. Section 3 focuses on the
properties of thin ice, the modeling aspects and comparisons of the model calculations with
radar observations. Then, we discuss tile approach to ice thickness retrieval and its results

i Section 4. The last section summarizes the paper.




2IData Characteristics and Calibration

2.1  Background

[ he polarimetric SAR data used here were collected in March 1988 by the NASA/DC-8
multi-frequency polarimetric imaging radar. The radar operates in P,I. and C-band. Fach
frequency channel has the capability of simultaneously collecting linear like-polarized (HH
and VV) and cross-polarized (HV and VH)backs catter data. The transmitter alternately
drivesthe horizontally and vertically polarized antennas while dual receivers simultaneously
record the like-polarized and cross-polarized ethos. In this manner, the scattering matrix
ol every resolution element in an image is measured. The spatial resolution of the 4-look
S.\R data used here is approximately G.6mand and 11 m in the slant range and azimuth

directions, respectively. The range of look angles is between 20° and 70°.

\We define here the polarimetric coefficients used in this paper. Polarimetric backscattering

properties of any distributed radar target are described by a covariance matrix, C, containing

scattering coefficients defined by,
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wheype £ is the electric field, A is the illuminated area, r is the radar range, the subscripts
j.v,7,andk can be h for horizontal or v for vertical polarization, and the subscripts i and
~stand for incident and scattered waves, respectively. The components of the scattered field
i the above equation can be obtained by measuring the h and the v polarized returns while
theincident field is transmitted exclusively in 4 or v polarization. For a reciprocal medium,
the covariance matrix reduces to,
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where the diagonal elements Ghihhy Ohehus and 04y, are the conventional backscattering
cocfficient o477, 918v,and ovv, respectively. Forsea ice with c-axis having random azimuthal
orientation, Fhhhe = Ohuww = O [Nghiemet al., 1992]. Consequently, the covariance matrix
contains only five independent parameters: o, ouv,ovy,e(Onnw) and Im(ohswy). Two

other frequently used parameters that are derived from these coeflicients are,
< Ohhwy >
a V< onu STy S ¢

whichisthe complex correlation coefficient between the hh and vv channels, and,

< Oyy >
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is the ratio of the maguitude of the co-polarized returns. The  polarimetric ~ SAR
(C'M1372) used in this study is shown in Figure 1. This scene was imaged on Marchil at
approximately 1720GMT. At that time, the scene was located at 73°N and 143° approxi -
mately 75-km northwest of the driftingice station (described below). The color radar image
is displayed as a three frequency overlay where the red, green and blue color composites rep-
resentthe PyL,and C band frequency responses with the pixel intensity modulated by the
tota backscattered power. In this region, ice conditions comprised of a mixture of first-year
(1Y) and multiyear (MY)ice forms in this region of transition between the polar pack and
vounger near shore ice [Drinkwater et al., 1991; Cavalieriet al., 1991). Visually, the rounded
floes which appear as blue are typical of oldice signature (in winter conditions) where the
("-band response is dominant. The linear features (yellowish) are ridged or rafted first year
ice. The remainder of the image contains first year ice of higher backscatter and the thin ice
intheleads which have the lowest backscatter in the scene. It is the ice in these leads which

wefocus on in this study.

2.2 Weather and lce drift

Weatherand sea ice data were collected inMarch 19SS within a 150-km radius of the Applied

Phvsics laboratory (APL) drifting ice station(APLIS88) approximately 350-km north of

scene




Prudhoe Bay, Alaska. Daily air temperatures, atimospheric pressure, wind speed and wind
direction were recorded at the location of the ice camp and are reported by Wen et al. [1989).
Theserecords provide the most reliable description of the mesoscale meteorological conditions
inthe region where aircraft remotely sensed data were acquired. Wind speeds on March 11
at tile ice camp varied betweenland5m/sfromthe south due to a low pressure systein
locatedover central Alaska. Air temperatures fluctuated between -12°C and - 18° C on March

Il.whilethe air temperature of the preceding 4-day period was -16“C.

lce drift in the location of the scene was observed to be largely westward during the period
ol observations. Drift speeds recorded at APLIS'S8 indicated that bouts of rapid ice motion
and deformation were correlated with periods of highwind speeds. On the clay prior to which
t he scene was imaged, winds (measured at 3 height) of approximately 7-8m/s had been
recorded and the sea ice drift peaked at 32cm/s which was the highest drift speed recorded at
\ 1'1,1S'SS during the months of March and April. Divergent ice motion was responsible for
many new cracks and leads imaged on March11l (the SAR data from Figure 1 was collected),

andnewleads were rapidly freezing under the cold conditions.

2.3 Data Calibration

Polarimetric measurements of all elements in the complex scattering matrix were recorded
digitally by the radar. Scattering matrix data arc subsequently processed, with proper con-
<ideration of polarimetric calibration, into the covariance matrix output described previously.
Forabsolute calibration, ovv for MY ice is set to be the same backscatter as that observed
by (-band VV ERS-1 SAR [Kwok and Cunningham, 1993]. At |,-band, the absolute scale
was set with corner reflectors located near Fairbanks, Alaska. A technique|[Yuehet al., 1992)
which exploits the reciprocity ant] symmetry of the scattering targets was used for polari-
metric calibration. This method calibrates the polarimetric data in amplitude and phase

with solutions based on exact relationships for scattering coefficients derived with symmetry
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groups and is valid for all scattering mechanisms {Nghiem et al., 1992a]. This method works
well for sea ice due to the azimuthal symmetry as a result of the random orientation of the

c-axis of the ice crystals.

3 Characterization of Thin Ice

3.1 Thickness of Lead Ice

In this section, we discuss the thickness of the ice in the leads. Although we do not have
direct surface measurements of the thick ness, the evidence of the thickness range of the ice
is given by the weather and icc conditions described above and the almost contemporanecous
ligh resolution passive microwave observation of the same scene during the March 1988
flicht campaign. These passive microwave observations were collected by the Naval Research
[.aboratory (previously NORDA)K, bandscanning radiometer system (IXRMS)[Fppler et
al.. 1956] which was flown on the RP-3A aircraft. On March 11, the passive sensor was flown
onthe same heading, approximately 10 minutes ahead, as the NASA DC-8 aircraft. Figure
2 shows the KRMS image of the scene, presented with the contrast reversed i.e. the pixel
valuesin the image are inversely proportional to the radiometric brightness of the sea ice. The
rounded floes which correspond to multiyecar ice have brightness temperatures in the range
01' 1 (5-175°K and the various types of first year ice are radiometrically warmer (darker) than
MY ice. The brightness temperature of t helead ice in the scene is between 150-200°K. The
variability of the brightness temperature in thed leads are shown in Figure 2. We extracted
data samples for these four leads from both the SAR and KRMS data. It was observed
thatnilas (0-10cm) associated with newly frozen leads and bodies of open water span a
wide range of brightness temperatures, starting from the brigthness temperature of water
(115°K), that coincide chiefly with that of old ice to the brightness temperature of first-year

ice (220° K) [Eppler et al., 1986). A direct relationship between the brightness temperature
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and ice thickness appears to exist for newly formed ice, such that the brightness temperature
increases rapidly with sinall increases in theice thickness [Fppler et al., 1986]. However, this
relationship wasnot quantified in their study due to the lack of surface measurements. The
brightness temperature of light nilas (5-10cm) was observed to be over ZOO*K, which suggests

thatthe ice in the leads is in approximately the same range.

3.2 lce Properties

Salinity/Brine Inclusions. Iield measurements in the Beaufort sea indicate that thin ice
with a thickness of a few centimeters canhave a salinity as high as 16 parts per thousand
[Coxr and Weeks, 1974). Yor ice less than 0,4 m in thickness, Cox and Winks [1974] have
found an empirical linear relationship for the salinity S (in part per thousand - ppt) given
by S=214.24 —19.39h as a function of thickness h (in meter). This relation suggests
salinities of 12.5-14 ppt for the thickiiesses (0-10cm) considered here and we varied the
salinities according to this relationship in ourmodel. At an average ice temperature of —8°C
[Drinkwateretal., 1991], we caculate the volume fraction of brine inclusion to be 10% based
onthe equations of Cor and Weeks [1 983] with the assumption of no gaseous constituents.
Inthis case, the relative permittivities are €2, =-45.3 + 244.8 [Stogryn and Desargent, 19S.5]
{"or thebrine inclusions and €2 = 3.15+4:0.0013 [ Vantet al.,1978; Tiuri et al., 19S4] for
ice hackground at C band. At L band, they are €2s= 57.3 + i103.0 [Stogryn and Desargent,
1985] and €2 = 2.95 + 10.0014 [Fvans, 1965; Tiuri et al.,1984] for the brine inclusions and
ice background, respectively. The ellipsoidalbrineinclusions in thin ice are described with
correlation lengths of €200 = oy /7 = €5.0/7.5=4.0 x 107* m and with the long axis being
vertically aligned or with an orientation probability density p(v, #J) = 8()/(47) where ¥
and ¢ are the Fulerian angles and é is the delta function. It has been observed during
the Lead Experiment (L EADEX, 1991 and 1992) that there exists a thin and highly saline
surface skim on new ice [Richter-Menge and Perovich, 1992] as a result of brine rejection

during ice formation. This surface skim is on the order of millimeters thick composed of ice
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and brine with salinity as high as 100ppt. Due to this high salinity, the surface brinelayer
has a nigh permittivity and significantly affects the microwave signatures of thin ice. ‘I'his
brinelaverwas included in our composite scattering model to explain the trends observed in
t he C-and L.-k and polarimetric scattering coeflicients. This brine surface skim is assumed
tobe amixture of ice and brine with a thickness of 1.2 x10°m and effective permittivities
of Gerr = (12.9 +19.2)¢g a C band and €15y = (15.9 + 121.1)¢o at |, band. These arc
estimated by the Polder and van Santen’smixing formula, which can be reduced from the
strong fluctuation results under thelow frequency limit [ Tsangetal., 1985], for spherical
scatterers with fractional volumes of constituents calculated from the salinity in the brine
layver Nolume scattering in this thin andlossy layer is ignored in the present model. Forsea

water, the relative perrnittivities are obtained from the results of Klein and Swift [1977].

Sulil(lee Roughness. At the interface between the air and brine layer, wc assume a roughness
with a height standard deviation of do1- = S.0 x10*m and a correlation length of 4o, = 0.1
mwhile the interface between the brine and ice layers was assumed to be smooth. The
nnderside of the ice layer naturally has some small-scale roughness which has not been we]]
characterized for Arctic thin ice. In the Cold Regions Research and Engineering Laboratory
Ixperiments (CRRELEX), saline ice has been grown in a laboratory environment to simulate
thin lead ice. Roughness measurements of the underside of this ice has a height standard
deviation oy, of approximately 4.8 x 10™* m and correlation length 23 of approximately

N.2 x 10-111 [Onstott, 1990).

3.3 Model Results

I'igure 3shows physical parameters used in the layered configuration of the scattering model.
‘1 he predicted C-band and L-band results for a range of thicknesses (1, 3 and 5cm) are
shovwninFigure 4. In the model, we varythe thickness of the ice layer, The salinity

andbrine distributions vary according to the empirical relations discussed in Section 3.2.
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These variations result in changes of the ice anisotropic effective permittivity, which affect
propagation velocity, attenuation and scattering properties of the sea ice. If the ice layer
thickness is assumed to be uniform, the backscattering coefficients oscillate as a function of
thickness d uc tp the coherent interference of waves from the layer interfaces. Because sea ice
doesnot have uniform thickness in nature, the information provided by the backscattering
cocflicients usually represents the average thickness of the ice over a certain range. Hence,
we define the ice thickness distribution, f(h), determined by a single parameter gamma

distribution:

where I(h) =2p anti - is the thickness at maaz{f(h)]. ‘I’he model results in Figure 4 have
been convolved with this distribution function. We note that the backscatter coefficients are
less sensitive to changes in thickness at L-band. Figuresd and 6 compare the model results
with actua polarimetric observations, Thlemodel results are obtained with the same set of
i uput parameters for C- and li-bands. Radar observations were extracted from the four leads
tocharacterize the incidence angle dependence of the polarimetric parameters. Typically,
cach data point represents an average of over 50 data samples. We also note here that there
could be variability in the ice thickness in the four leads as is evident in the KRMS data,
su t heincidence angle trend may not berepresentation of sea ice with an average mean
thickness. The superimposed model predictions are from ice with A=5cm. At C band, o,
decreases by approximately 5 dBovertherange of incidence angles while orn has a steeper
slope. g, is higher than orn and the co-polarization ratio « issmall at low incidence and
can be larger than 3dB at high incidence aungles. These copolarized returns compare well
withthe model calculations except that the model calculations are lower at low incidence
angles. The cross-polarized returns also compares well although the model calculations are
alit tle higher than the observations. In this model, the cross-polarized returns are caused
by the ellipsoidal shape of the scatterers. The magnitude of p at C band is low compared
tothat observed for first-year and multi-year ice {Drinkwater et al., 1992] and is relatively

independent of incipience angles where the observed values of 0.3 to 0.6 are lower than the




calculated values of about 0.65. We attribute this tothe low returns from thin ice at Cband
andthe decorrelation effect of noise is more severe [Kwok et al.,1992]. The observed and
model calculated phases of p are small and show a slightly decreasing trend. At I. band, the
co-polarized returns o,, and o, decrease quickly as a function of incidence angle and the
co-polarized ratios « are large at nigh incident angles. The cross-polarized return is a weak
function of incidence angle. These conventional backscattering coefficients compare well with
themodel calculations. In constrast to the behavior of |p| measured at C band, |p| at |, band
clearly shows a decrease in magnitude with increasing incidence angles. The phase of p at
l.band issmall and a weak function of incidence. Both the magnitude and phase of the
complex coefficient p compare well with the model results. In general, the calculations from

the composite model compare well with the trends observed at both C-band and L-band.

3.4 Discussion of Model Results

Forinterpretation of the polarimetric backscattering signatures of thin ice, we discuss the
scattering mechanisms in the layered configuration used here. If the total scattering is com-
pletely due to the volume scattering without surface contribution, the 1,-band backscattering
coeflicients o, and Okr are too low especially at low incidence and decrease too slowly with
incidence angles in constrast to the experimental observations as seen in Figure 7a.Further-
more. the model calculated |p| does not havethe strong incidence angle dependence observed
in the data as presented in Figure 7b. At L-band, the surface scattering is dominant at small
incidence angles, is comparable to the volume scattering at about 30° incidence, and has
maoderate contribution at larger incidence angles. The surface scattering also contributes to
the total scattering a8 C band but the contribution is smaller for the roughness considered
here.On the other hand, surface scattering alone without the volume scattering cannot
explainthe low values of |p| in the observations at both frequencies (Figure 8).The small
Ipl’s arc due to the decorrelation effect of the ellipsoidal scatterers in an anisotropic layered

configuration. Uncorrelated noise in the radar channels can contribute to this decorrelation;
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however, an unrealistically large amount of noise in the co-polarized signals is necessary to
decrease the |p| calculated for surface scattering alone to thelevel observed in the data
If" t he scatterers become spherical, the vertical and horizontal returns are more correlated
as suggested by the larger [p| in Figure 9. ‘1'bus, the decrease in |p|at I. band is due to
a combination of the effects of surface roughness and ellipsoidal scatterers. Forthe highly
saline surface skim layer, the effect of the high permittivity enhances the reflection of the
cnergy inthe horizontal polarization rather the vertical. Consequently, the transinission in
the horizontal polarization is less,reducing the backscattering coefficient o,y relaive to oy,
andthus the co-polarized ratio y becomes larger especially at higher incidence. Without
t s brine layer, the calculated v at C band is less than 1 dB at about 50° incidence while
thethe radar measures more than 3dB. Atl. band, without this brine layer, the trend in y
isevenreversed for model results with 4 < 0dB3 while the radar data are about 3 dB at 50°

incidence. It seems that the brine layer was important in explaining the observed values of

t he copolarized ratio ~.

l'ostudy the uncertainty due to the correlationlengths of the brine inclusions, a simulation
is carried out by varying the correlation lengths by factors of 0.75 and 1.25 (or +25%).
| e results arc presented in Figure 10a for Cbhandand Figure 10b for . band. ‘I’here are
threecurves foreach of the backscattering coefficient oy, @hhy Or Fhy- The middle curve
is calculated from the correlation lengths used in the data comparison, the upper is for the
259% increase, and the lower for the 25% decrease. The plots show that the backscattering
coefficients at I band, compared to Cband, are more sensitive to variations in the correlation
lengths which may in turn contribute to thelarger fluctuations in the L-band data. Morcover,
the copolarized returns o, and oxn at I band have smaller variations at smaller incidence
anglesas compared to the effect on the cross-polarized return sy (Figure 11). The reason
isthat all the cross-polarized backscattering coefficient is calculated from the ellipsoidal
scaterers while the co-polarized returns contain contributions from both volume and surface

scattering. L.-band returns at smaller incidences are also sensitive to the rough surface
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parameters such as the heightstandard deviation and thesurface correlation length. Here,
theupper interface dominates the signature so the co-pol returns contain little information

aboutthe thickness, especially at low incidence angles.

4 Retrieval of Thin Ice Thickness

4.1 General Approach

A neuralnetwork is used as a non-linear estimator for retrieving the mean ice thickness. The
approach illustrated in Figure 1 1. Thescattering model described in the preceding section is
nsed to generate the polarimetric scattering; coefficients of sea ice with a range of thickness
Letween 0-15em at the C- and L-band., Thefive polarimetric coefficients used here are:
o, onv, ovve Re(ornoy), and Im(own,.). Thisdataset provide the input-output pairs
to ‘t rain’ the neural network such that the resultant network would provide an estimate of
the t hickness when presented with a set of polarimetric scattering coeflicients. It should be
noted here that this is not a direct inversion of a scattering model in the traditional sense.
A\s discussed before, we focus on the leadice by masking out the thicker ice types using a
simpleice type classificaiton scheme described in [Nwok et al.,1992). The mask for the scene

i~ shown in Figure ha.

4.2 Neural Network Description/Training

Huynhetal.[1993] have investigated the potential application of neural networks (NN} for
retrieval of ice thickness by demonstrating the effectiveness of NNs as non-linear estimators
when presented with model-gene’ratrd polarimetric scattering coefficients. Here, we follow

the same approach in the design and implementation of the neural network. Briefly, the




ncural network consists of an input layer, an outputlayer and two hidden layers with the
nodes in eachlayer connected to each other. Thenumber of input nodes for the input
laver equals the number of input elements. In this case, the inputs are the five polarimetric
Lackscatter coeflicients. The number of nodes inthe second and third layer are 10 and 30,
respectively. ‘1'here is only one output node, since the average ice properties are functions of
ice thickness, which provides an estimate of the thickness of the ice given the polarimetiic
observations. The backpropagation propagation algorithm described in [Lippmann, 1987]
was used for training the network. The algorithm uses the gradient descent method to
adjust the connection weights through an iterative process which minimizes the difference
hetween the actual and the desired output of network. After the network is trained, a given
t raining input can be mapped into the desired output with an error rate which is defined by

the convergence criteria

Thebackscatter coefficients for training the NN were generated by the scattering model
deseribed previously. The thickness and salinity are dependent parameters, which have been
found to be linearly related to each other as discussed in Section 3. llence,we relate the
~alinity (in parts per thousand) given by .S =14.24 — 19.39h with the thickness h in meter.

I'he variations of the ice parameters in the training datasets were discussed in Section 3.3.

Inthe training dataset, each of the five backscattering coefficients can differ from one another
by several orders of magnitude. The effect of this is that, within the network, some coeffi-
cients can be weighted more than others. To normalize the inputs, all elements are scaled
tobetween =1 and 1 so that they have the saine order of magnitude. Table 1 shows the
twoscts for incidence angle dependent normalization factors for the L and C-band scattering
cocilicients. When the NN is used in the estimation mode, these normalization factors are
used to scale the input data. Therefore, the relative scaling between the polarimetric radar
channels are preserved. We account for tile varying polarimetric signature with incidence
angle by having separate neural networks at 3 degree intervals, Figure 12 shows the the nor-

malized backscattering coefficients versus the average thickness at the two frequencies at the
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imcidence angle of 40°. The errors in tile estimation of ice thickness after 70,000 iterations

through the backpropagation algorithm are showninFigure 13.

4.3 Retrieval Results

\We evaluate our approach at the individual frequencies to estimate average ice thickness as
a function of incidence angle since the calibration as well as the scattering coefficients vary
as afunction of this parameter. Even though there is uncertainty in the actual thickness,
we expect the process to provide consistent estimates of the thickness except for the effects
of relative calibration between tile frequency channels (which could introduce biases) as well

asinefficaciesin the scattering model at C- and 1,-bands.

During the inversion process, the input polarimetric coefficients to the NN are formed by
averaging the polar imetric coefficients of al the lead pixels within a 3° incidence angle range
toreduce effect of speckle on the inversion process. We found that speckle introduces a large
scatter in our thickness retrieval scheme and since there arc very few lead pixels in the image,
we resorted to averaging with an incidence angle range. The overall ice thickness distribution
of the sea ice in the leads obtained with our retreival scheme are shown in Figure 15. Within
cachfrequency, the average thickness at each of the the 3° incidence angle interval is shown
inligure 16. The results from the near range incidence angles (less than 35°) are not shown
here because some of the radar data are saturated in this range and saturated the network.
\We do not show the retreived thicknesses from the L-band data because we do not believe
theresultsto be valid below 40° incidence, we discuss this further below, At both C- and
l.-bands, the estimated average thickness of the lead ice is between 6-9 cm over the incidence
angle range, which shows consistency in the process. We base the following discussion of the
results on Figures16 and 17. We attempt to point out some of the salient points with the
realization that this is a demonstration of a process using one dataset and that an in-depth

analvsis is only justified for a larger datasct has been analyzed.
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IFirst, we discuss the discrepancy betweenthe shape of the thickness distribution between
l.-bandand C-band. The I.-band distribution terminates more abruptly than the C-band.
Wenotedin Section 3 (Figured) that the sensitivity of the 1,-band signatures to increasing
thicknessdecrease rapidly when the ice is morethand cm thick. At |,- band, surface scatter
dominates (Figure ‘i) except for higher incidence angles. As a result, the L.-band retrievals

would saturate beyond a certain thickness whichseems to be indicated by the distribution.

Next,we discuss why the lower incidence angle (less than 35°) thickness retrievals are invalid.
We attribute the failure of the process toinefficacies in our model predictions and deficiencies
imour retrieval process. At lower incidence angles, the model outputs do not match the
polarimetric observations as well, especially at C-band. Thelower incidence angle surface
scatter contribution at the C-band wavelength is probably not well-modeled with our current
setof physical parameters and hence we obtain discrepancies in the calculated and observed
resu Its at C-band. Additionally, higher order scattering may have more contribution at
(-band. We attribute the poor retrievals results from the |.-band to the behavior of thin
icesignature as well as the behavior of theretrieval process (Figures 6 ancl 12). In our
<«cheme, each polarimetric coefficient is normalized independently of each other. We have
nottakeninto account the signal-to-noise ratio of each measurement, the effect of which
isto confuse noisy signals as significant discriminators in our process. This is the case
atl-band, where the ret rieval process is more dependent on the polarimetric coeflicients
Im(/THVV*yand HV, both of which are close to the noise floor of the radar. In contrast,
("-band has significant cross-pol (/ V') returns due to volume scattering and therefore the
retrieval process is more sensitive to the co-polarized responses. ‘I'his may bias the retrieval
process to better performance at C-band. We also examined the sensitivity of the retrieved
thicknesses clue to calibration errors to evaluate the robustness of the process. The results

frombiasing the input data by +1dB isshowninkigure 17. The effect is indeed small.




5 Summary

\\'e liave summarized the ice properties of thin sea ice in the 0-10cm range. These properties
were used inas scattering model to explainthe polarimetric signature of thin ice acquired
by the NASA/DC-8 radar. The thickness of the thin ice in the leads is supported by pas-
sive observations from the KRMS sensor, The layered scattering model we used here were
cottfigured with a surface skim layer and an ice layer on top of a half space of sea water.
The surface roughness between theinterfaces as well as the volume scatterers in the ice layer
were modeled. Comparison of the polarimetric observations with model output showed that,
in broad terms, the model calculation predicts the signature of thin ice quite, well especially
inthe incidence angle range between 35° and 45°. We note here that there is probably a
mixture of thin ice with different thickness in the leads and as such we do not have the pure
signaturce of alead with uniform average thickness. We attribute some of the discrepancies
we observe between the model calculations and radar measurements to these thickness vari -
ations. The significance of the highly saline surface skimlayer on the polarimetric signature
was pointed out. Its effect on the magnitude of. the co-polarized ratio at high incidence
angles is an important signature and discrimator for thin ice. Based on these model results,
we demonst rated an approach to retrieve thin ice thickness from polarimetric SAR data. An
inportant step in the approach is to mask out the thicker ice types such that the retrieval
process can focus on thin lead ice within alimited range of thickness and signature charac-
t eristits. The inversion process was mechanized with a neural network trained with a range
of input({polarimet ric coefficient s)-output(ice thickness) characteristics. The stablized net-
work can then speedily retrieve ice thicknesswhen presented with polarimetric observations.
The results and model predictions seem to indicate that C-band performs best in the thick-
nessrange O- 10cm due the scale of thethickness to the wavelength and the corresponding
physical and electromagnetic properties of sea ice. The L-band model calculations seem to
indicate that the polarimetric measurement would be less sensitive to ice thickness at the

range (0- 10cm). We have not investigated the cent ribution of the the individual polarization

16




cocflicients to the retrieval process. We plan to further our investigations with polarimetric
scatterometer measurements and well-characterized ice properties from future field experi-
ments and laboratory measurments at Cold Regions Research and Engineering Laboratory

(CRREL).
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Angle OHH OHy __ovy Re(onnuy) Im(ohhyy)
37 degree 4.348x 10-3 5.616 X 10* 5.87é x10? 4.239 x 10° -1.788 x 10*
40 degree | 3.8BLxx100% | 5.033x 10-* | 5.665x 1072 | 3.963 x 1073 | -1.776 x 10~*
43 degree | 3.392x 100° | 4.458x 10" | 5460x 1073 | 3688x 1073 | —1.713x 1074
46 degree 2.962x 100° 3.899 x 10- 5.265 x 10° 3.417 x 10-° -1.603 x10*
|49 degreel 2.576 x10-3 3.362x 10° 5.078 X 10° 3.151 x10-3 -1.452 x10*
Table 1a. Normalization constants of the training data at C band.
Angle oHH oHV ovv Re(onnov) Im(onhvy)
37 degree 7.695 x 10~4 1.163 x 10~* 1.442 x 10-3 7.819 x 10~4 -3.291 x 10-°
40degree | 6205 x 10| 1.055 X 10°|1.191 x 10°| 6.089 X 10*| -3.368 X 10°
43 degree | 5.051x 10-° | 9.476 x10° | 9.889 x10* | 4.790x10-* | -3.358 x10°
‘ 46 degree 4.128 x Do 8.38Bxx1D0*° 8.268 xx1D0* 3.80Bxx100* ~3.262 x100°
ILA_19 degree 3.368 x Do* 7.32% xx100°® 6.98Dxx100* 3.0 x 1D-* -3 086 xW00°

Table Ib. Normalization constants of the training data at L band.




IFigure Captions

Figure 1. ?olarimetric SAR scene used in this study. (Scene 1372: Beaufort Sea three

frequency power image acquired at 73°2.9'N, 112017.1 'W at 1720GMT on March 11, 1988. )

Figure 2. (8) K, band (KRMS) scanning radiometer image of the same scene collected
approximately 10 minutes ahead of the overflight; (b) Brightness temperature of the ice in

the four lcads.

Figure 3. Configuration of layered scattering model with description of ice properties of the

lavers and tile interfaces.

I'igure 4. Model calculated polarimetric signature for different thicknesses. (a) C-band, (b)

I.-band.

Iigure 5. Comparisons of the C-band polarimetric observations with model calculations. (a)
Backscatter coeflicients, (b) Magnitude of correlation coefficient, and (c) Phase of correlation

coeflicient.

Figure 6, Comparisons of th l.-band polarimetric observations with model calculations. (a)

Backscatter coefficients, (b) Magnitude of correlation coefficient, and (c) Phase of correlation

cocflicient.

Figure 7. Comparisons of the l.-band polarimetric observations with model calculations. (@)

Backscatter coefficients and (b) Magnitude of correlation coefficient.

Figure 8. Comparisons of measured and calculated correlation coefficients. The solid curves
are calculated from the complete composite model. The dash curves are for surface scattering

with no volume scattering. (@) C band ant] (b) 1. band.

I'igure 9. Comparisons of measured and calculated correlation coefficients. The solid curves



arc calculated from the complete composite model with ellipsoidal brine inclusions. The

dash curves are for spherical brine inclusions. (@) C band and (b) 1, band.

I"igure 10. Variations in the calculated correlation coeflicients due to +25% change in ratios
of brine correlation lengths. For each type of backscatter coefficient, the upper curve is for
theincrease in the correlation lengths, the lower is for the decrease, and the middle is the

same as the curves plotted in Figures 3 and4. (a) C band and (b) I, band.
Figure 11. An approach to retrieve ice thickness from polarimetric SAR data

Figure12. Characteristics of the normalized training dataset at 40°. (a) C-band and (b) -

l.-band.

Figure 13. Estimation errors after 70,000 iterations through the backpropagation training

procedure.

Figure 14.(a) Mask for thick ice. (b)Estimated distribution of ice thickness.
Figurelb. Thickness distribution obtained withC- and L.-band SAR data.
Figure16. Average thickness as a function of incidence angle.

IMigure 17. Sensitivity of retreival process to +1dB of calibration error (a) C-band; (b)

I-band.




\ad n,i

T 5y




Brightness Temperature (K)

220

200

180

160

140

—

Lead 2

Lead 1

Lead 3

Lead 4
Vg

25

35 45
incidence Angle of SAR (deg)

Fi

W
I




€0. g [ = frequency

z=0m

g1 = 0.0008 m, £y, = 0.10 m

c1epp = effective permittivity

SL.USH
z = -0.0012 m

fas = brine inclusion frac. volume

[21./ = fgyf/T = [231/7.51 0.0004 m
Lo . SEA ICFE
€25 = permi ttivity of brine
€2 = permittivity of ice
= :=-h—-0.0012m
Underlying mediumn :
93, = 0.00048 111, £33, = 0.0082 m SEA WATLER

¢3 = permittivity of sea water

Physical parameters for thin lead ice




Scattering C ceficient (dB)

Scattering Coefficient (dB)

-20

-35

-40

-45

Thn (C-band)

1 ! 4
: :
' — - Thickness = 1 cm ]
L —— Thickness = 3 cm ]
[ - — - Thickness = 5 cm J
i N TSI P R S ]
20 30 40 50
Incident Angle (degrees)
O, (C-band)
T Y T L{
r — - Thickness = 1 cm ]
t —— Thickness = 3 cm ]
. — Thickness =5 cm J
] 1 1 :
20 30 40 50

Incident Angle (degrees)

Scattering Coefficient (dB)

Magnitude of p

1
-
w

0.9

0.8

0.7

0.6

0.5

g,, (C-band)

LIS B B I B

T

T T T YTy

—_— -
—_—

— - Thitkaesss = 1 cm
— Thitkoess = 3 ¢m
. — Thickmess = 5 €&m

PR DO S BT S S |

PN AR

N
o

30 40 50

Incident Angle (degrees)

el (C-band)

E

— - Thickness
Thickness

3
.. = Thickness = &

=1

cm
cm
Cm

20

50

30 40

Incident Angle (degrees)

L oA



OTpn (L-band)

— - Thickness = 1 cm
—— Thickness = 3 cm
— . - Thickness = S cm

PR GRS W SR SR VY S SN NS S S

i

1

n

PO Ul B SN0 T U AU WA SN A N G S Y

=25
o [
©
O, L
€—30
2 r
Q L
g 35
© L
o L
g r
g —40 -
§ b
—45
=35

N
o

30 40

Incident Angle (degrees)

Oho (L-band)

50

5

LN S SN u B UL S A0 BN SN NN SN SNL AN HNLNL AN BNL AN

Scattering Coefficient (dB)
' &
3 &

'
(6]
(¢]

FUNT U B U U U W G T U Y I S

N
o

— - Thickness = 1 cm

— Thickness = 3 cm

- — Thickness = 5 cm
| ! ! i
30 40 50

Incident Angle (degrees)

b B 1983 11008

g,, (L-band)
— —20 [ 0 ¥ A Y T T T v T I 1
m 4
o r ]
S o B
c —25 ]
2 C ]
Q2 r ]
§-30 F ]
o r ]
o - ]
€ _z5 [ — Thickness = 1 cm =]
2 } ~—— Thickness =3 cm ]
° [ —- Thickness =5 cm ]
x} p
" C P S SRR S
—40 ——t
20 30 40 50
Incident Angle (degrees)
lpl (L—bend)
1
09 F T~ ]
a .t ]
5 ” ]
o 08¢ ]
Re) I ~ ]
3 F ~ ]
‘-_I o —
c 0.7 7]
o [ 4
3 - — Thickness = 1 cm ~ ]
0.6 Thickness = 3 cm .
I - . — Thickness = 5 cm ]
S B VU BT
20 30 40 50

Incident Angle (degrees)




Sccttering Coefficies s (dB)

Magoi ude of p (lieor)

Phase of o (oegre=s)

!
N
o

(a) Scattering Coefficients from 1372C

YT T Y T T LN ¥ A
MY MMMy ik AR
XX XK Xxg Rk T ) W
--40
vV o, data - g, calc.
H o,, data oy, talc.
60 X g, data - — oy, talc.
U U VO VN VO G W TS VOIS IV G SIS S | 1
20 30 40 50
Incident Angle (degrees)
(b) Magnitude of p from 1372C
1 e T
08 r 7
0.6 o 9, 00 .
[ 00 °%FA2 o °
0.4 - Op 5 o 0@ I:PO nnn ut'l: -
o° 00 QU o Q ° 1
0.2 + o |l data A
! lol calc.
FUR U T U G W SR GINY GHUES S VA W W | | S
20 30 40 50
Incident Angle (degrees)
(c) Phase of p from 1372C
T v T T T \ ASERE s S SSSL SEEE RIN AR { \
! o <pdata ]
I <p cale. |
50 - o ]
r [} 4
ok o° o ° °9° g% °%g : ]
: o ° ° [o] oO o o :
~50 L y
N N N | N | PSS S S |
20 30 40 50

Incident Angle (degrees)

e

(n




(a) Scattering Coefficients from 1372L

Scattering Coefficients (dB)

Vo, data — a,, colc.
H o data ~—— oy, colc.
_60 k X a,, dota - == g, caic. ]
PP S T T UGN W U S G S S
20 30 40 50
Incident Angle (degrees)
(b) Magnitude of p from 1372L
1
/: 3
® 08 |
£
= L
Q 0.6 |
S s
3 04
2 L
S 02} o o data 1
o lol calc.
= r
0 NN WS U SR U N W G e  —
20 30 40 50
Incident Angle (degrees)
(c) Phase of p from 1372L
—r—r T T T T T T
— I o <p data ]
o s <p calc.
¥ 50 ]
s -
o -
'8 I o (¢} 4
T AN LR, XY 2P
Q I ° o )
5 | o ]
5 ot ]
o -50 )
" - b
o L
NP U U S W W S S S
20 30 40 50

Incident Angle (degrees)

6
//J



Scattering Coefficients (d8)

Magnitude of p (linear)

(0) Scattering Coefficients from 1372L

v S — ——
-20
—40
Ve, doto volume
H a'py, dots —on\‘;qume
-60 x Opy data . — a,, volume
4 " PN WD S U W 1 1 __a A n " 1 i
20 30 40 50
Incident Angle (degrees)
(b) Magnitude of p from 1372L
1 M T M | M MRS
0.8 | 0% o ]
0og 092 2 g
S oo o g%lo% o <
0.6 | o w. .
° %" u%0
L s ]
0.4 } N
0.2 dota .
L volume )
0 " U VN ST 1
20 30 40 50

Incident Angle (degrees)




Magnitude of o (iinear)

Magnitude of p (iinear)

0.5

®.5

(a) Magnitude of p from 1372C

M T M T M LR
i
E 1
- o oo Dﬂnn udbo -
L o Y
| uﬂu °°°° o ﬂ° aﬁﬁ :
° doto 1
i composite 1
B — rough sur,
U S U G U U S YUY Wi SO G S WY U S
20 30 40 50
Incident Angle (degrees)
(b) Magnitude of p from 1372¢L
ML T LA |
Z PLa
L o0a o
s LRI AT
-
i o doto
i composite
:‘ —_ rough sur.
— b, |
20 30 40 50

Incident Angle (degrees)

T




Magnitude of p (linear)

Magnitude of p (linear)

0.5

0.5

(o) Magnitude of pfrom1372C

o oo oo"no ou o0
-]
u°° o.o°q:. 0°° dicbo‘fp
0 data
eilipsoidal
- spherical
t | VR U G S St
20 30 40 50
Incident” Angle (degrees)
(b) Magnitude of p from 1372L
T DA T
— — - |
o -] — —
obo a = -
% ¥ Fo”
o data
ellipsoidol
- spherical
1 1 1
20 30 40 50

Incident Angle (degrees)



(dB)

Scottering Coefficients

Scottering Coefficients (dB)

(o) C Bond: Correlation Lengths in Ice

-20 +

= OG5 % %‘.ﬁﬁ.- § o
—-40 }

V o, data - a__ Cole.
H ;:hdoto — a; coale.
X oy, data - — 0, calc.
-60 [ [
| 1 t
20 .30 40 50

Incident Angle (degrees)

(b) L Bond: Correlation Lengths in Ice

-20

~40

20 30 40 50

Incident Angle (degrees)




POLARIMETRIC
SAR OBSERVATION

SEA ICE

MODEL

THEORETICAL I
PREDICTIONS l'

NEURAL NETWORK

(BACK PROPAGATION
TRAINING MODE)

SCATTEROMETER
OBSERVATION

SCATTERING ¢—POLARIMETRIC SAR

OBSERVATION
ICE CHARACTERISTICS
PHYSICS

WEIGHTS l

NEURAL NETWORK
(INVERSION MODE)

THIN ICE
—» THICKNESS
MAP

ICE MASK OUT _

TYPE THICK ICE =
CLASSIFICATION TYPES

PRINCIPAL ICE THIN ICE

TYPES TYPES



(a)

jue|dYe0) Bupenoosyoog

0.15

0.1

<

| A 1

7 beey
7 ol
l..

a1l | S

- « © e o

o o o o
s1uo|dYe0) Bupepoomyorg

©

Thickness (m)

Thickness (m)

(d)

®)

[ Z

$1Ue|2}400) bupeyposio0g

- /4 E238E {8
/ . l"l' <
1 " 1 2 [l A 1 A

- B 4 ™~ o
2 2 & 3o

sjue(dye0) Buueynoosioog

Thickness (m)

Thickness (m)

| -l TR} QRSP



,/u
¥
A SR e —— T
~ ) Lo
- J/lm 3 V1M
/
33 ‘1 e A
5% ..\. 8 ‘|,
ww \ ! ww h.
. :
3 A- L ~ /. —
L ../lm.u“ /.m\ N ..v.i E
o
L] [}
s ! P m s I 7{ &
! \.. z ! \ ; S
) | - =
2 %
. ., 4
. .
- /t lw. - :\l%
N C =
bQn . QO'
.........-r\...*....» N ST P Y AU
&g ®©° o ® ° g ®© g = ©
%) Joue ebojuedled &) Jowe ebpjueale
d
Y T v T v v M T vy T ]
J t] To)
- 11_ b= -
o o
A 1 A 1
\ ] ! N\

0.1
0.1

(a)
Thickness (m)
(©
Thickness (m)

Desired
c_bond
c_bond
0.05
Desired
— L bond at
- (bond at
0.05

4 _. -
[ | « 0
I ' e
1 " 1 s ad o 1 PR SO
n - Lo 0 L ad Lo
=1 b S I P <
o o o o




ICE THICKNESS

DERIVED

POLARIMETRIC SAR DATA

THICKNESS DISTRIBUTION
A

wppsb oubusdino subo i

(Lwo) NOLLNBIYLSIO
SSIANMOIHL

‘. -
PR
oy "
Qlt

o

THICKNESS (cm)




1

Thic<ness Distributioo cm

cm

Thickness Distribu ioe

0.060

0.050

0.040

0.030

0.020

0.010

0.000

0.10

0.08

0.06

0.04

OV

HHIIHHHHIHIHUHIHIITHHIIHHIITYUHI«HII]

1

C—overall

-

o

{_FII‘IIYI1TI:;TIT]

o.ooM, B

el e

Thickness (cm)

_ L-overall ___

o Attt Sl

Thickness (cm)

TN

1
!IIlllh]llllllll!!“llIllllll!!!l!l‘l!l!llluj

{

rpprerReitny

M



GGl £661—120~i

N (so4bop) s|buy souspiou
bl

oS G+ of

|
|
wn

I

|
o
-—

/
/

/
\
\

\

1

I

|

|

|
|
(wo) ssawyolyy

Gl




1780 £661—-2ON-6

ﬂm\, WD\.N

(e34bop) o Buy souspiou

0S 134

I
n

\
o

|
(wo) ssauoly]

Gl

(AMYY) W (AYY )oY AA AH HH




Ov:€l €661 —AON—FL yuany

(eaibap) s|buy souspiou

<)

0 : 124

n

{
]
2
(wo) ssauxolyl




